FORCING SQUARE SEQUENCES

MAXWELL LEVINE

In the 1970's, Jensen proved that Gödel's constructible universe L satisfies a combinatorial principle called \Box_{κ} for every uncountable cardinal κ . Its significance is partially in that it clashes with the reflection properties of large cardinals—for example, if μ is supercompact and $\kappa \geq \mu$ then \Box_{κ} fails—and so it characterizes the minimality of L in an indirect way. Schimmerling devised an intermediate hierarchy of principles $\Box_{\kappa,\lambda}$ for $\lambda \leq \kappa$ as a means of comparing a given model of set theory to L, the idea being that a smaller value of λ yields a model that is more similar to L at κ .

Cummings, Foreman, and Magidor proved that for any $\lambda < \kappa$, $\Box_{\kappa,\lambda}$ implies the existence of a PCF-theoretic object called a very good scale for κ , but that $\Box_{\kappa,\kappa}$ (usually denoted \Box_{κ}^*) does not. They asked whether $\Box_{\kappa,<\kappa}$ implies the existence of a very good scale for κ , and we resolve this question in the negative.

We will summarize the technical background of the problem, outline the construction of the model that serves as a counterexample, and discuss further avenues of research.